Classes of 3-Regular Graphs That Are (7, 2)-Edge-Choosable

نویسندگان

  • Daniel W. Cranston
  • Douglas B. West
چکیده

A graph is (7, 2)-edge-choosable if, for every assignment of lists of size 7 to the edges, it is possible to choose two colors for each edge from its list so that no color is chosen for two incident edges. We show that every 3-edge-colorable graph is (7, 2)-edge-choosable and also that many non-3-edge-colorable 3-regular graphs are (7, 2)-edge-choosable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J un 2 00 8 Classes of 3 - regular graphs that are ( 7 , 2 ) - edge - choosable

A graph is (7, 2)-edge-choosable if, for every assignment of lists of size 7 to the edges, it is possible to choose two colors for each edge from its list so that no color is chosen for two incident edges. We show that every 3-edge-colorable graph is (7, 2)-edge-choosable and also that many non-3-edge-colorable 3-regular graphs are (7, 2)-edge-choosable.

متن کامل

DIMACS Technical Report 2008 - 03 February 2008 Classes of 3 - regular graphs that are ( 7 , 2 ) - edge - choosable

A graph is (7, 2)-edge-choosable if, for every assignment of lists of size 7 to the edges, it is possible to choose two colors for each edge from its list so that no color is chosen for two incident edges. We show that every 3-edge-colorable graph is (7, 2)-edge-choosable and also that many non-3-edge-colorable 3-regular graphs are (7, 2)-edge-choosable.

متن کامل

Total weight choosability of graphs

A graph G = (V, E) is called (k, k′)-total weight choosable if the following holds: For any total list assignment L which assigns to each vertex x a set L(x) of k real numbers, and assigns to each edge e a set L(e) of k′ real numbers, there is a mapping f : V ∪ E → R such that f(y) ∈ L(y) for any y ∈ V ∪ E and for any two adjacent vertices x, x′, ∑ e∈E(x) f(e)+f(x) 6= ∑ e∈E(x′) f(e)+f(x ′). We ...

متن کامل

Planar graphs with $\Delta\geq 7$ and no triangle adjacent to a $C_4$ are minimally edge and total choosable

For planar graphs, we consider the problems of list edge coloring and list total coloring. Edge coloring is the problem of coloring the edges while ensuring that two edges that are adjacent receive different colors. Total coloring is the problem of coloring the edges and the vertices while ensuring that two edges that are adjacent, two vertices that are adjacent, or a vertex and an edge that ar...

متن کامل

Planar graphs with maximum degree ∆ ≥ 9 are ( ∆ + 1 ) - edge - choosable – short proof

We give a short proof of the following theorem due to Borodin [2]. Every planar graph with maximum degree ∆ ≥ 9 is (∆ + 1)-edge-choosable. Key-words: edge-colouring, list colouring, List Colouring Conjecture, planar graphs This work was partially supported by the INRIA associated team EWIN between Mascotte and ParGO. in ria -0 04 32 38 9, v er si on 1 16 N ov 2 00 9 Les graphes planaires de deg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2009